Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.

نویسنده

  • Sergey Shabala
چکیده

BACKGROUND Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. SCOPE AND CONCLUSIONS This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality

Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt to...

متن کامل

Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes ar...

متن کامل

Evaluation of Mulberry(Morus spp.) Genotypes for Tolerance to Major Abiotic Stresses

Sericulture has played a very important role in the socio-economic empowerment of rural and semi-urban population. The eco-friendly nature of the industry, in addition to its employment generation potential, low investments and frequent returns, has rendered the industry as one of the most suitable land based economic activity, particularly in the context of global movement against environmenta...

متن کامل

Genetic analysis of abiotic stress tolerance in crops.

Abiotic stress tolerance is complex, but as phenotyping technologies improve, components that contribute to abiotic stress tolerance can be quantified with increasing ease. In parallel with these phenomics advances, genetic approaches with more complex genomes are becoming increasingly tractable as genomic information in non-model crops increases and even whole crop genomes can be re-sequenced....

متن کامل

Genetic engineering for modern agriculture: challenges and perspectives.

Abiotic stress conditions such as drought, heat, or salinity cause extensive losses to agricultural production worldwide. Progress in generating transgenic crops with enhanced tolerance to abiotic stresses has nevertheless been slow. The complex field environment with its heterogenic conditions, abiotic stress combinations, and global climatic changes are but a few of the challenges facing mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 112 7  شماره 

صفحات  -

تاریخ انتشار 2013